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PHASE TRANSITION UPON SOLIDIFICATION FROM A LIQUID STATE

UDC 537.525.1:621.793.7A. I. Fedorchenko

A criterion that allows one to predict a priori a mechanism (equilibrium or nonequilibrium)
according to which the phase transition upon solidification of a melt from a liquid state will
occur is obtained. The fundamental possibility of experimental determination of the kinetic
constant and the energy of activation is shown on the basis of the phase-transition criterion
obtained and the solution of the problem of sequential nonequilibrium crystallization.

Introduction. Solidification from a liquid state underlies many methods of producing new materials
with unique properties. The high cooling rate of a melt in such processes makes it possible to obtain
nonequilibrium structures such as metal glasses, microcrystalline alloys, and supersaturated solid solutions. It
follows from results of experimental studies on crystallization of droplets of metal melts [1–3] that supercooling
of metal drops of diameter 20–500 µm can reach hundreds of degrees. To study the physical specific features
of solidification processes under given conditions (the cooling rate is of the order of 106–108 K/sec and the
supercooling is 100–300 K), it is necessary to take into account the kinetics of solidification.

Zhukov et al. [4] proposed a model of equilibrium solidification of the drops of metal melts upon
impact with a massive substrate. Calculation results, related experimental data [5, 6] and the values of the
impact parameters are given in Table 1 (h̄exp and h̄calc are the experimental and calculated values of the
height of the solidificated drop referred to the drop diameter Dp, T 0

p and T 0
b are the initial temperatures of

the drop and the substrate, respectively, and Up is the velocity of the drop). Table 1 shows that together
with the satisfactory correspondence of the theoretical and experimental data for Al–Al and Al–Ag systems,
the calculated values exceed the experimental ones. One can assume that this difference is due to the fact
that the model of equilibrium crystallization cannot be applied to all the modes of drop–substrate interaction
considered.

Equilibrium crystallization occurs when the supercooling at the crystallization front is equal to zero,
which usually takes place for a certain time interval after the beginning of the phase transition, for example,
far from the cooling surface. In the case of solidification of the laminas of melts we consider here, this condition
cannot be realized. Therefore, a criterion that allows one to predict a priori a mechanism (equilibrium or
nonequilibrium) according to which the phase transition will occur is necessary. To do this, we consider the
problem of solidification of a melt drop within the framework of the model of nonequilibrium crystallization.

Formulation of the Problem. It is known that the main difference between the models of sequential
equilibrium and nonequilibrium crystallization consists of the absence or presence of supercooling at the
crystallization front. In accordance with this, the equations determining the motion of the crystallization
front also change. However, it follows from the general physical considerations that the driving force of any
phase transition is the deviation of the thermodynamic parameters of a system from their equilibrium values,
i.e., the presence of supersaturation, the role of which is played, in the case of melt–crystal phase transition, by
supercooling at the crystallization front ∆T = Tm − T , where Tm is the equilibrium melting (crystallization)

Kutateladze Institute of Thermal Physics, Siberian Division, Russian Academy of Sciences, Novosibirsk
630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 42, No. 1, pp. 108–114,
January–February, 2001. Original article submitted November 30, 1999; revision submitted June 14, 2000.

0021-8944/01/4201-0097 $25.00 c© 2001 Plenum Publishing Corporation 97



TABLE 1

Drop Substrate
Dp, µm Up, m/sec T 0

p , K T 0
b , K h̄exp h̄calc

material material

Ag Ag 162 30 1234 573 0.1111 0.1883

Al Ag 180 30 933 673 0.0667 0.0858

Cu Ag 120 30 1353 573 0.0833 0.1404

Ni Ag 80 30 1726 673 0.0625 0.1177

Fe Ag 80 30 1803 773 0.0625 0.1160

Ti Ag 90 30 1943 573 0.0555 0.0900

Zr Ag 150 30 2023 473 0.0667 0.1107

Al Al 240 30 933 673 0.0500 0.0606

point. The velocity of motion of the phase-transition front for metal melts upon supercooling at the front is
described by the law of normal growth

v = K∆T, (1)

where K is the kinetic coefficient dependent on the properties of the melt material. Here the thermal-balance
conditions

ρLv = [q]f (2)

should be satisfied at the phase-transition front. Here ρ is the density, L is the specific heat of the phase
transition, and [q]f is the jump of thermal fluxes at the crystallization front.

Since it is assumed that ∆T = 0 in the case of an equilibrium phase transition, Eq. (2) determines
the velocity of motion of the crystallization front; here Eq. (1) degenerates. However, the case of equilibrium
crystallization can be formally included in the model of sequential nonequilibrium crystallization by means
of the following limit transition:

veq = lim
∆T→0
K→∞

K∆T. (3)

Here veq is the equilibrium velocity of the phase-transition front.
In addition, the rate of decrease in supercooling depends on the phase-transition heat and the heat-

transfer coefficient β at the crystallization front. If one uses the phase-transition volume heat Lv = ρL instead
of the specific heat L, the unique dimensionless combination

Ω =
β

LvK
(4)

can be composed of the parameters β, Lv, and K.
An important conclusion follows from (3) and (4): the condition Ω � 1 corresponds to the case of

equilibrium crystallization. Thus, the quantity Ω can serve as a criterion that indicates a priori a mechanism
according to which the phase transition will occur.

Model of Sequential Nonequilibrium Phase Transition. We consider the impact of a melt
drop of diameter Dp heated to the melting point Tm with a flat solid substrate with velocity Up. With the
delay time τd from the moment of impact in the plane z = 0 coinciding with the substrate plane, the phase
transition whose front ζ(t, r) moves in the positive direction of the z axis toward the top of the spreading
drop zp(t) begins. The delay time τd is determined by the expectation time for the appearance of the first
critical nucleus in the melt. It is assumed that the heterogeneous nucleation occurs. In the approximation of
nonequilibrium crystallization, the velocity of motion of the phase-transition front depends on supercooling
at the crystallization front, i.e., dζ(t, r)/dt = f(∆T ), where the form of the function f(∆T ) depends on the
mechanism of crystal growth (normal or stratified). For metal melts, one can adopt the normal mechanism
of growth [7] described by the equation dζ(t, r)/dt = K∆T .
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Fig. 1. Temperature distribution upon deformation and solidification of the drop on
the substrate: 1) substrate; 2) crystal; 3) melt.

In the first approximation, we assume that the coefficient K does not depend on supercooling and a
completely solidificated drop is shaped like a flat disk. This allows us to determine the moment of complete
solidification of the drop t∗:

ζ(t∗, 0) = ζ0(t∗) = zp(t∗). (5)

Here zp(t) is the coordinate of the moving top of the drop.
For conditions corresponding to the modes of solidification from a liquid state (the velocity of the drops

is 20–100 m/sec and the linear sizes are 10–100 µm), the substrate can be assumed to be semi-infinite and
to occupy the half-space −∞ < z < 0. One can also consider that the constant temperature Tm is kept in
the liquid part of the drop owing to the convective transfer of the melt to the solidification front. Figure 1
shows the temperature distribution for the given formulation of the problem.

We write the heat-conduction equation for the substrate and the solidificated part of the drop for
r = 0, ignoring the radial heat transfer:

∂tTb = ab∂zzTb, ∂tT
(s)
p = a(s)

p ∂zzT
(s)
p . (6)

Here the superscript s corresponds to the solid state of the drop material; ab and ap are the diffusivities of
the substrate and the drop, respectively.

In the plane z = 0, we have

Tb(t, 0) = T (s)
p (t, 0), λb(∂zTb)z=0 = λ(s)

p (∂zT (s)
p )z=0. (7)

Here λb and λp are the heat conduction of the substrate and the drop, respectively.
The thermal-balance condition at the crystallization front is written in the form

λ(s)
p (∂zT (s)

p )z=ζ0(t) = ρ(s)
p L

dζ0(t)
dt

+ β(Tm − Tf ), (8)

where Tf is the temperature of the crystallization front.
Expressions (5)–(8) and the condition at infinity Tb(t,−∞) = T 0

b close the formulation of the problem.
We reduce the initial system to a dimensionless form, using the values of Dp, Tm, and Up as scale

values:

∂θb
∂ Fo

= ab,p
∂2θb
∂z̄2

,
∂θ

(s)
p

∂ Fo
=
∂2θ

(s)
p

∂z̄2
, θb(0,Fo) = θ(s)

p (0,Fo), λb,p
∂θb
∂z̄

∣∣∣
z̄=0

= −∂θ
(s)
p

∂z̄

∣∣∣
z̄=0

,

(9)

θf = 1−R dζ̄

dFo
,

∂θ
(s)
p

∂z̄

∣∣∣
z̄=ζ̄

= (Ku + λ(l,s)
p NuR)

dζ̄

dFo
= Leff

dζ̄

dFo
.

Here z̄ = z/Dp, θ = T/Tm, Fo = a
(s)
p t/D2

p is the Fourier number, R = a
(s)
p /(DpKTm) is the ratio of

the diffusion and kinetic velocities, λb,p = λb/λ
(s)
p , λ(l,s)

p = λ
(l)
p /λ

(s)
p , ab,p = ab/a

(s)
p , Ku = L/(c(s)

p Tm) is
Kutateladze’s criterion, Nu = βDp/λ

(l)
p is the Nusselt criterion, and Leff = Ku + λ

(l,s)
p NuR is the effective

dimensionless heat of melting; the superscript l refers to the liquid state of the drop material.
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System (9) was solved analytically by Lyubov [7]; therefore, omitting intermediate calculations, we
give only the final results. The dimensionless coordinate of the phase-transition front is determined from the
relation ζ̄ = 2γ

√
Fo, where the constant γ is found from the characteristic equation

1− θ0
b

Ku + λ
(l,s)
p NuR

=
√
πγ[Kε + erf (γ)] eγ

2
. (10)

Here Kε =
√
λ

(s)
p ρ

(s)
p c

(s)
p /(λbρbcb) and θ0

b = T 0
b /Tm. It follows from expression (10) that the effect of the

kinetics itself on the process of crystallization is determined by the criterion

Ω = λ(l,s)
p

NuR
Ku

=
β

LvK
(Lv = ρ(s)

p L), (11)

whose form coincides with relation (4) obtained in terms of the similarity and dimensionality theory.
With allowance for (11), Eq. (10) is written in the form

1− θ0
b

Ku (1 + Ω)
=
√
πγ[Kε + erf (γ)] eγ

2
. (12)

According to (3), upon equilibrium crystallization, the condition K → ∞ should be satisfied and,
hence, Ω � 1. Therefore, one can ignore the value of Ω compared to unity in Eq. (12). In this case, the
dynamics of the crystallization front will be completely determined by the criterion of equilibrium phase
transition Ku. Otherwise, for Ω � 1, the dynamics of the phase transition will depend significantly on the
kinetics of the process.

We consider the problem of determining the height of the solidificated drop. As done in [4], assuming
that the velocity of the drop top is a constant magnitude on the time interval considered, we obtain the
following equation which determines the time of complete solidification of the drop:

1− δ Pe Fo = 2γ Fo1/2, (13)

where δ = a
(l,s)
p , Pe = UpDp/a

(l)
p is the Peclet number, γ is the root of the transcendental equation (12), and

a
(l,s)
p = a

(l)
p /a

(s)
p .

We write the solution of Eq. (13) in the form Fo∗ = (2γ2 + δ Pe− 2γ
√
γ2 + δ Pe )/(δ Pe)2. Therefore,

the dimensionless height of the solidificated drop is h̄ = h/Dp = 1− δ Pe Fo∗.
To use the resulting expressions, it is necessary to calculate the average value of the Nusselt number

and the kinetic constant K.
Convective Heat Transfer in the Vicinity of the Critical Point. We consider the axisymmet-

rical nonisothermal flow of an incompressible liquid in the vicinity of the critical point and determine the
contribution from the convective component to the heat transfer at this point.

Since for metal melts, the Prandtl number is Pr ≈ 10−2–10−3, to determine the velocity component u
normal to the substrate, one can use the solution of the problem of ideal spreading of a liquid in the vicinity
of the critical point u = −2αz, where α is a constant quantity, which will be determined below. Then, the
boundary-value problem of convective heat transfer takes the form

∂tT − 2αz ∂zT = a ∂zzT, T (t,∞) = T (0, z) = Tp0, T (t, 0) = Tb0. (14)

We reduce problem (14) to a dimensionless form, introducing the following dimensionless variables:
θ = (T − Tp0)/(Tb0 − Tp0), η = z(2α/a)1/2, and τ = 2αt. We obtain

∂τθ − η ∂ηθ = ∂ηηθ, (15)

θ(τ,∞) = θ(0, η) = 0, θ(τ, 0) = 1. (16)

To solve problem (15), (16), we introduce the self-similar variable ϕ = η/f(τ) with an unknown
function f(τ). Then, Eq. (15) takes the form
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d2θ

dϕ2
+ ϕ(ff ′ + f2)

dθ

dϕ
= 0, (17)

where f ′ = df/dτ .
We require that the bracketed expressions in Eq. (17) be equal to unity. Whence we find the explicit

form of the function f(τ):

f(τ) = [1− exp (−2τ)]1/2. (18)

The solution of the resulting equation

d2θ

dϕ2
+ ϕ

dθ

dϕ
= 0

subject to the boundary conditions θ(∞) = 0 and θ(0) = 1 takes the form

θ(ϕ) = 1−
√

2
π

ϕ∫
0

exp
(
− x2

2

)
dx. (19)

Now we find the local value of the Nusselt number

Nu = βDp/λ
(l)
p . (20)

Presenting (20) in the form

Nu =
qDp

λ
(l)
p (Tp0 − Tb0)

=
Dp

Tp0 − Tb0
∂T

∂z

∣∣∣
z=0

and using expressions (18) and (19) for calculation of the derivative, we obtain

Nu =

√
4α
πa

Dp√
1− exp(−2τ)

. (21)

We determine the coefficient α in formula (21) as follows [8]:

α = Up/(2Dp). (22)

With allowance for (22), expression (21) takes the form

Nu =

√
2 Pe
π

1√
1− exp (−2τ)

.

Averaging the local number Nu over the characteristic time of drop deformation Dp/Up to which the dimen-
sionless time τ = 1 corresponds, we obtain Nu =

√
5.5 Pe/π.

Discussion of Calculation Results. At present, reliable experimental data permitting one to find
the values of K for melts of metals or alloys are lacking, whereas the theoretical values obtained on the basis
of one or another model concepts of the rate of crystal growth differ greatly. This is connected with the fact
that the values of certain parameters used in theoretical studies are approximate. In the present work, to
determine K, the expression

K =
DL∆Ha

dakT 2
m

, (23)

where DL = D0 exp [−E/(kTm)] is the self-diffusion coefficient, da is the effective diameter of a molecule
(atom), E is the energy of activation of a viscous flow, ∆Ha is the enthalpy of melting per molecule (atom),
and k is the Boltzmann constant, was used. In formula (23), the values of the preexponential factor D0

included in the self-diffusion coefficient and the energy of activation of a viscous flow are approximate.
Therefore, we perform calculations according to the proposed model for Ag, Al, Cu, and Ni drops (see
Table 1), for which exact values of D0 and E are known [9]. The data used for calculation of the process of
drop solidification according to the model of nonequilibrium crystallization are given in Table 2.
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TABLE 2

Melt da, 10−10 m D0, 10−7 m2/sec E, 10−20 J/atom ∆Ha, 10−20 J/atom

Ag 2.68 0.9 6.0 1.87

Al 2.67 2.0 4.2 1.75

Cu 2.38 0.7 6.6 2.15

Ni 2.33 1.8 9.15 2.95

TABLE 3

Drop Substrate
h̄exp h̄eq h̄neq Ω

material material

Ag Ag 0.1111 0.1883 0.1173 1.13

Al Ag 0.0667 0.0858 0.0805 0.18

Cu Ag 0.0833 0.1404 0.0774 1.56

Ni Ag 0.0625 0.1177 0.0785 0.57

Al Al 0.0500 0.0606 0.0605 0.16

The calculation results obtained for the dimensionless height of solidificated drops according to the
nonequilibrium model and the values of the phase-transition criterion Ω are listed in Table 3 (h̄eq and h̄neq

refer to the calculation according to the equilibrium and nonequilibrium models, respectively).
An analysis of the results obtained allows us to make the following conclusions. According to (4), one

can use the equilibrium model for Ω � 1. The values of the phase-transition criterion Ω = 0.18 and 0.16
correspond to the modes of Al–Ag and Al–Al interaction. Here the calculation results obtained according to
the equilibrium and nonequilibrium models almost coincide and agree well with the experimental data.

With increase in Ω, the difference between h̄neq and h̄eq also increases; however, the values of h̄neq and
h̄exp are, as before, in good agreement.
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